Electrochemical Reduction of CO2 Catalyzed by Re(pyridine-oxazoline)(CO)3Cl Complexes.

نویسندگان

  • John K Nganga
  • Christian R Samanamu
  • Joseph M Tanski
  • Carlos Pacheco
  • Cesar Saucedo
  • Victor S Batista
  • Kyle A Grice
  • Mehmed Z Ertem
  • Alfredo M Angeles-Boza
چکیده

A series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO2 reduction ability. The reported complexes are of the type Re(N-N)(CO)3Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO2 by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO2 reduction by 1 in acetonitrile using density functional theory (DFT) supports the C-O bond cleavage step being the rate-determining step (RDS) (ΔG⧧ = 27.2 kcal mol-1). The dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C-O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO)3Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (icat/ip)2, up to 7 times larger than that of I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)3Cl.

We report a series of complexes synthesized from the chemical reduction of the fac-tricarbonyl complex Re(bpy)(CO)(3)Cl. Synthesis and characterization of [Re(bpy)(CO)(3)](2), [Re(bpy)(CO)(3)](2)(-), and Re(bpy)(CO)(3)(-) are presented. The Re(bpy)(CO)(3)(-) anion has long been postulated as the active species that reacts with carbon dioxide in the electrochemical reduction of CO(2).

متن کامل

Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes.

We study the electrochemical, spectroscopic, and photocatalytic properties of a series of Ru(II)-Re(I) binuclear complexes linked by bridging ligands 1,3-bis(4'-methyl-[2,2']bipyridinyl-4-yl)propan-2-ol (bpyC3bpy) and 4-methyl-4'-[1,10]phenanthroline-[5,6-d]imidazol-2-yl)bipyridine (mfibpy) and a tetranuclear complex in which three [Re(CO)3Cl] moieties are coordinated to the central Ru using th...

متن کامل

Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal-Ligand Binding of CO2.

[((Ar) PMI)Mo(CO)4 ] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4 ] complex, which is ligand based according to IR-SEC and DFT data. To pr...

متن کامل

Enantioselective reactions catalyzed by chiral pyridine 2,6-bis(5',5'-diphenyloxazoline)-metal complexes*

A new class of tridentate pyridine-bis(oxazoline) ligand having gem-diphenyl groups at C5 of the oxazoline rings has been developed. Its metal complex exhibited high catalytic efficiency in asymmetric synthesis. We have shown that gem-diphenyl groups at C5 of the oxazoline rings are essential for getting high enantiomeric excess.

متن کامل

Electrogenerated Chemiluminescence. 59. Rhenium Complexes

Re(L)(CO)3Cl complexes (where L is 1,10-phenanthroline, 2,2′-bipyridine, or a phenanthroline or bipyridine derivative containing methyl groups) are photoluminescent in fluid solution at room temperature. In acetonitrile solutions, these complexes display one chemically reversible one-electron reduction process and one chemically irreversible oxidation process. λmax for the luminescence is depen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 56 6  شماره 

صفحات  -

تاریخ انتشار 2017